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ABSTRACT: Electrochemical deposition of cationic and anionic polyelectrolyte on Au electrode 19 

is studied as a function of applied potential between the electrode and the solution of monovalent 20 

electrolyte. The deposition is measured by open circuit potential relative to pristine electrode in a 21 

reference solution (100 mM NaCl). The rate of deposition is measured by a home-built 22 

electrochemical-optical method in real time. It was discovered, that the polarity of the potential or 23 

magnitude of potential are not the primary reason to enhance deposition. For example, both the 24 

amount and rate of deposition of negatively charged poly(styrene sulfonate) in NaCl is higher 25 

when the electrode is at -200 mV than +200 mV with respect to the solution. The results are 26 

explained in terms of the charge state of electrical double layer that is primarily controlled by 27 

supporting (small) ions. 28 
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INTRODUCTION 29 

The polyelectrolyte (PE) thin film on an electrode has a range of modern day applications, 30 

such as biosensors1,2 and energy storage devices.3-5 The system is highly facile because of a 31 

simple immersion coating process which forms a monolayer that can be extended to a complex, 32 

stratified, layer-by-layer structure of cationic and anionic polymers6 due to spontaneous 33 

overcharging during PE deposition.7,8 The modulation of electrostatics by regulating 34 

environmental conditions, such as pH, counterion strength, surface charge density, weak versus 35 

strong charging of the polymer, and polymer flexibility, to tailor deposition has been 36 

exhaustively explored, both experimentally 9,10 and by theory/simulation.11,12 The layered 37 

structure allows the ability to incorporate complexities, such as nanoparticles, mediators, and 38 

cofactors in PE thin film. For example, embedding proteins in PE film has led to simple methods 39 

for electronically wiring the protein to an underlining electrode for efficient electron transfer. 40 

This has led to the development of biosensors,1,13-15 enzyme fuel cells,16,17 and the ability to 41 

conduct a fundamental study on the charge transport mechanisms by directly coupling the 42 

protein to an electrode (i.e., protein voltammetry)18-23. Embedding metallic nanoparticles to 43 

facilitate electron transport in ion-conducting PE film has led to variety of electrochemical 44 

sensors,24-29 electrocatalytic films,30 and electronic devices.31-35  45 

Electrodeposition of PE by applying a potential, that has been utilized for applications such as 46 

anticorrosion coatings decades ago,36,37 is relatively less explored. The prevalent approach for 47 

electrodeposition is to alter the interfacial environment by an active redox reaction to cause 48 

polymer precipitation (close to the interface) followed by electrophoretic deposition. Recently, 49 

the old process of pH-mediated deposition by hydrolysis36,37 has been extended to deposit a 50 

plethora of PEs, enzymes, cofactors, mediators, and biopolymers for applications such as 51 
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biosensors.38-42 However, the biases are well above 1 V. Using the idea of modulating solubility 52 

by redox reaction of the counter ion has been leveraged to achieve electrodeposition at a 53 

potential below 1 V without water hydrolysis.43-46 The active process of redox has also been 54 

demonstrated to obtain covalent bond deposition by click chemistry.47  55 

The effect of passive (i.e., non-redox) modulation of the interfacial environment on 56 

electrodeposition has not been well studied. One primary reason for this is the strong screening 57 

of the emanating electric field from the electrode due to the electrical double layer (EDL).48 58 

Consequently, deposition can be enhanced by invoking a redox reaction to de-screen the EDL by 59 

way of rapid electron exchange with the electrode compared to ion diffusion. The process of de-60 

screening was demonstrated by enhancing the amount of binding of target single stranded DNA 61 

(ssDNA) in solution to immobilized complimentary probe ssDNA by three orders of magnitude 62 

using redox of [Fe(CN)6]4-/3- in <30 min compared to 8 hrs for simple diffusion limited process.49  63 

Here we describe our study on electrodeposition of poly(styrene sulfonate) (PSS) and 64 

poly(allylamine hydrochloride) (PAH) on an Au electrode as a self-organization process (rather 65 

than self-assembly),50 where the external potential, E, between the electrode and the solution 66 

forces the system away from equilibrium to cause ordering (i.e., PE deposition).  For the study, 67 

we added ~100 mM of NaCl or NaBr to nominally fix the EDL thickness to ~ 5 nm (i.e., Debye 68 

length to ~1 nm) and modulate the effective thickness by charging/discharging the EDL by 69 

external potential. The driving force for electro-deposition of the PE due to the external potential 70 

given by the difference in Fermi level of the electrode and solution are in 100 meV or ~4kT 71 

range (where k is Boltzmann's constant and T is temperature of  ~300 K).  We probed 72 

irreversible deposition by open circuit potential and measured rate of deposition in real time 73 
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using a home-built differential reflectometer. We specifically studied the role of supporting salts 74 

NaCl and NaBr on the deposition of PSS and PAH on Au electrode.  75 

EXPERIMENTAL  76 

Polyelectrolyte Solution Preparation.  PSS (Mw = 500 000 Daltons) was obtain from 77 

Scientific Polymer Products; and PAH (Mw = 120 000 Daltons), Sodium Chloride (NaCl) ≥ 78 

99.0% and Sodium Bromide (NaBr) ≥ 99.0% were obtained from the Sigma Aldrich Chemical 79 

Co. The polydispersity index provided by the supplier was 1.1 to 1.5. De-ionized water of 18 80 

MΩ resistivity was used to prepare all solutions. Aqueous solutions of PSS 10 mM and PAH 10 81 

mM (based on moles of repeat units) were prepared either with 100 mM NaCl or 100 mM NaBr.     82 

Electrode Preparation on Si Chip.  Samples were prepared on a 1 cm square Si chip with a 6 83 

mm square Au electrode of ~81 nm roughness and a 1 mm square pad at a corner to provide 84 

connection to the electrode (Supporting Information (SI), Section S1). The multilayer electrodes 85 

were Au (100 nm)/Ti (70 nm)/SiO2 (5000 nm)/Si substrate. A 5 mm square was patterned on the 86 

electrode by photolithography on a 300 nm thick spin casted SU8-2025 photoresist (Microchem). 87 

Before each experiment, the chip was exposed to RF plasma (Nordson March Model PX-250) at 88 

38 W and 13.56 MHz for 30 s in O2 at 70 mTorr to clean the Au electrode surface.     89 

Polyelectrolyte Absorption.  After plasma cleaning, the chip was immediately immersed in 90 

10 mM of PAH or PSS with 100 mM NaBr or NaCl. A constant potential (Edep) between the 91 

(working/sample) electrode and the reference electrode (Ag/AgCl) in the solution was applied 92 

using a potentiostat (Metrohm Autolab). Current between the electrode and a Pt wire counter 93 

electrode was measured to monitor the deposition in real-time to determine the integrity of the 94 

process (SI, Figure S2).   95 
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Measurements of Open Circuit Potential (OCP), VO.  The OCP was measured in 100 mM 96 

NaCl at a pH of 6.8 (reference solution). Voltage between the Ag/AgCl reference and the 97 

working electrode was measured by a multimeter (Agilent 3458A). The potential reported is of 98 

the Au electrode with respect to the solution. To obtain stable measurements, each sample was 99 

placed in the reference solution for three hours to reach equilibrium followed by immediate rinse 100 

with 100 mM NaCl followed by immersion in freshly made reference solution. (SI, Figure S3 101 

compares the behavior with and without the (optimized) three hour process prior to OCP 102 

measurement). Long exposure to reference solution improved reproducibility (SI, Figure S3b). 103 

Thus, all the open circuit potentials reported are with respect to the (fresh) reference solution. 104 

The analog potential was measured and averaged every 10 s as a function of deposition time, tdep 105 

(see typical behavior, SI, Figure S3b). The rate of change of the potential was calculated from 106 

the successive averages. The measurement was terminated when the absolute value of the rate of 107 

change of the potential remained below 0.1 µV/s for more than 2 min (SI, Figure S3b) to obtain 108 

the OCP potential, VO.   109 

Measurement of Potential of Zero Charge (PZC), VZ.  Measurements of VZ were performed 110 

by a home built electrochemical-optical method.51 Briefly, the chip was placed in a sealed 111 

chamber (of volume ~1 mL) where the patterned electrode was exposed to a solution and the 112 

electrical connection was via the peripheral connecting pad outside the chamber. The optical 113 

measurement was performed during cyclic voltammetry (CV) using a potentiostat (Metrohm 114 

Autolab) with Ag/AgCl and Pt wire as reference and counter electrodes, respectively (SI, Figure 115 

S4). The chamber had a transparent window to facilitate optical measurements using a laser 116 

beam. The working electrode potential, E, was ramped form -0.2 V to 0.5 V relative to the 117 

reference electrode at 100 mV/s. A periodic AC potential of frequency of ω = 200 Hz and an 118 
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amplitude of 200 mV peak-to-peak was superimposed on the CV potential, E. The measured 119 

reflection is composed of a DC signal corresponding to the incident light intensity Ro, and an AC 120 

signal of amplitude RA due to the oscillation in ions at the electrode interface caused by the 121 

applied AC potential. The AC signal was measured using a lock-in amplifier (Signal Recovery 122 

7265 DSP) tuned at ω to obtain differential reflectivity, R(ω) = RA/Ro. At E equal to VZ, the R 123 

will peak at maximum penetration of the electric field from the electrode due to de-screening by 124 

the EDL (SI, Section S4).52,53  The ω and amplitude are chosen such that R(2ω)/R(ω) < 10-3. The 125 

VZ is calculated as the formal potential between the peaks at E during forward (Vf) and reverse 126 

(Vr) ramps, i.e., VZ = (Vf + Vr)/2. The PE solutions VZ were measured within a minute after 127 

injecting the solution in the chamber to avoid significant polymer deposition on the working 128 

electrode. The differential reflectivity is based on local charge in the EDL.53,54 In principle, as the 129 

laser spot can be scanned over the electrode; the instrument is referred to as, Scanning 130 

Electrometer for Electrical Double layer (SEED).  131 

Deposition Rate by SEED. Real-time deposition of PE on the (chip) electrode was measured 132 

by SEED. The chamber was filled with same solution of PSS or PAH as for VZ measurements 133 

above. The Edep was held constant by the potentiostat and R was measured for 10 min during 134 

deposition. The change in differential reflectivity over time was recorded. The rate of change of 135 

R with time was measured to obtain relative deposition rate. SEED was on immediately after 136 

injecting the solution into the chamber to capture the initial stages of deposition.   137 

RESULTS AND DISCUSSION  138 

The two central properties of interest for this study are OCP and PZC. The OCP, VO between 139 

the electrode and the electrolyte occurs due accumulation of ions at the interface to bring the 140 
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electrochemical potentials of the (bulk) electrolyte and the electrode into equilibrium. The result 141 

is formation of the EDL. As the Fermi level of Au (relative to vacuum level) is lower than that of 142 

the solution, on contact, EDL is negatively charged (i.e., anions are accumulated). Consequently, 143 

for pristine Au in non-adsorbing electrolyte solution, applying an external (negative) potential 144 

will discharge the EDL. This potential of zero charge, VZ is nominally equal to -VO. The 145 

relationship is not exact due to complexities, such as, finite thickness of EDL that has an 146 

exponential charge distribution. As PE binds at multiple sites, the system is forced far from 147 

equilibrium by absorbing the polymer due to external potential. As a result, the measured VO will 148 

depart from equilibrium value depending on the amount of polymer adoptions.    149 

 150 

  151 

 152 

 153 
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Figure 1. Deposition of PSS in NaBr on Au electrode. Change in |VZ,0 - VO| due to deposition 155 

of PSS at different Edep and tdep measured in standard solution (100 mM NaCl). 156 

As the Au electrode was immersed in a solution of PE and salt and a potential Edep was 157 

applied, the polymer adsorbed on the electrode which led to change in VO (relative to VO for 158 

pristine Au in reference solution, VZ,0) as tdep increased (Figure 1). To note is that each data point 159 

on Figure 1 is a different sample corresponding to deposition conditions, tdep and Edep. The error 160 
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bar was based on multiple samples for each condition.  As PE deposits on the electrode the OCP 161 

deviates from VZ,0 (the OCP for pristine Au). There is a sharp initial rise followed by a local 162 

plateau. Ignoring the last data point at 300 s for Edep = -220 and 0 mV, |VZ,0 - VO| is reasonably 163 

constant for tdep ranging from 100 to 200 s with significant differences between the applied bias, 164 

Edep.  Thus, to evaluate the effectiveness of electro-deposition we consider the value |VZ,0 - VO| at 165 

tdep = 120 s as |VZ,0 - VO|P at various Edep. Interestingly, |VZ,0 - VO|P with respect to Edep is not 166 

monotonic, i.e., larger external potential does not proportionally increase the amount of ultimate 167 

deposition of PE due to the potential. As noted above, the process is shifted from equilibrium, 168 

i.e., self-organization rather than self-assembly.50 Due to polymer adsorption VO departs from 169 

VZ,0 due to the added charge on the surface. If we assume that the mole fraction of (partial) 170 

charge compensation on the polymer due to counter ion (Na+ for PSS and Cl- for PAH) is 171 

constant, then |VZ,0 - VO| is linearly proportional to the amount of PE deposition. The assumption 172 

is reasonable, as the deposition is at most few monolayers, as indirectly inferred from PZC 173 

measurements discussed below (Figure 3).   174 
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Figure 2. Deposition of PE on Au electrode measured by OCP deviation at different Edep. (a) 187 

Deposition of PSS with maxima close to PZC of the corresponding salt in solution. (b) 188 

Deposition of PAH with maximum close to PZC of NaCl. 189 

From the above assumption of constant charge density of adsorbed film, the deviation from VZ,0, 190 

(|VZ,0 - VO|P) is equal to the relative change in the thickness of PE due to electro-deposition as a 191 

function of Edep  (Figure 2). For PSS in NaCl and NaBr the maximum deposition occurred at -240 192 

mV and -60 mV, respectively (Figure 2a).  For PAH in NaCl, the maximum deposition is at -240 193 

mV, similar to PSS in NaCl (Figure 2b). The peaks were prominently sharp and significantly 194 

shifted for different electrolytes. The Edep for maximum deposition primarily depended on Cl- 195 

versus Br- in the electrolyte rather than the sign of the charge on the PE. The enhancement in 196 

thickness at PZC may be estimated as follows:  Typically, the (saturated) thickness for the first 197 

layer of PSS and PAH deposition on Au in NaCl in quiescent conditions (i.e., Edep = 0 V) is 198 

approximately 1.5 nm and 1 nm for PSS and PAH, respectively.55 The deposition at PZC is 199 

enhanced by ~3 fold and 1.8 fold for PSS (Fig. 2(a) and PAH (Fig. 2(a)), respectively, relative to 200 
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Edep = 0. Thus, the thickness at PZC for PSS and PAH is ~4.5 nm and ~2 nm, respectively.  We 201 

note in passing that overnight deposition at PZC and 0 V had <25 mV change in OCP indicating 202 

the estimated values are nominally at saturation. The characteristics for PAH in NaBr are not 203 

reported because of its anomalous behavior as will be discussed below in terms of the PZC 204 

characteristics (Figure 3b).  205 

As the magnitudes of VO and VZ are nominally similar, we consider the PZC of PE modified 206 

electrode. The VZ was measured by SEED (see Experimental Section and SI Section S4). In the 207 

CV during SEED, when the potential is around the PZC the EDL is discharged. As a result, the 208 

electric field from the electrode emanates deeper in the solution to cause significant increase in 209 

ion oscillation due to the (small) AC potential superimposed on the CV ramp. The SEED 210 

measures a peak in amplitude of ion oscillation as a maxim in differential reflectivity signal, R 211 

when the CV potential, E (= VZ) is at the PZC (Figure 3). Thus, PZC is measured directly. The 212 

“halo” around each curve was obtained by averaging over 10 CV cycles (see SI, Figure S5). For 213 

NaCl with PSS or PAH in the solution the VZ on Au is nominally similar to pure electrolyte 214 

(Figure 3a). This indicates that the charge compensation is primarily due to the Cl- (as the EDL 215 

of gold is negatively charged). There is larger shift of ~30 mV for PSS while virtually no shift 216 

occurs for PAH (i.e., within 10 mV which is instrument sensitivity for CV). The latter is 217 

expected as PAH will not interact with Au (that tends to attract anions). While for PSS the VZ 218 

shifts to lower magnitude indicating some adsorption of the polymer. For NaBr, addition of PSS 219 

does not show significant effect as above (Figure 3b). However, for PAH the shift in VZ is over 220 

300 mV. Furthermore, the sign changes and the R is asymmetric. The anomalous behavior is 221 

under investigation and will not be reported here. A possible explanation is briefly discussed in 222 

Section S7 in SI. Importantly, Edep for maximum deposition signified by the peaks in |VZ,0 - VO|P 223 
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(Figure 2) and the VZ for the same system (Figure 3) are nominally equal in magnitude indicating 224 

that, maximum enhancement in deposition due to electric field is when Edep discharges the EDL.  225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

Figure 3. Measurement of PZC by SEED. Differential reflectivity during CV ramp on pristine 238 

Au right before PE deposition. The PZC is average potential of forward and reverse peaks. (a) 239 

PZC of solutions containing 100mM NaCl. (b) PZC of solutions containing 100mM NaBr. 240 
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The two methods of measuring OCP and PZC are significantly different. OCP was based on 241 

end-point of adsorption while PZC was based on solution property with minimal deposition. The 242 

remarkable concurrence between these two orthogonal approaches indirectly supports that the 243 

sample preparations approach to measure OCP (particularly the stabilization process of 244 

immersion for three hours in reference solution) is reasonable. Furthermore, the deposition of PE 245 

on Au is at most only a few monolayers, otherwise the Edep for maximum deposition would 246 

significantly depart from the VZ of the solution.  247 

Next, we consider the rate of deposition as measured by SEED. Similar to OCP experiment, 248 

the PE is deposited at fixed E = Edep and R was measured over a period of 10 min. The 249 

differential reflectivity, R, decreased monotonically over time for all the three solution (SI, 250 

Figure S6a-c). The decrease in R was attributed to the screening of the electric field emanating 251 

from the electrode due to PE deposition.  For solutions without the PE the R was stable 252 

confirming that the decrease is indeed due to polymer deposition (SI, Figure S6d,e). The change 253 

in R was nominally linear leading to a constant slope, S.  From Guass' law, the screening of the 254 

electric field is proportional to the charge deposited. Assuming the charge density of the PE 255 

deposited is constant, the decrease in R is nominally proportional the PE thickness deposited.    256 

Again, assuming mole fraction of compensating charge on PE is constant; the slope is 257 

proportional to the rate of PE deposition. Similar to total amount of deposition measured by |VZ,0 258 

- VO|P (Figure 2), |S| was maximum at VZ (Figure 4)). To ensure that S is exclusively due to 259 

polymer deposition, no peak is observed without the polymer (SI, Figure S7). Thus, both the 260 

amount and rate of deposition is highest at the PZC.  261 

 262 



 14 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

Figure 4. Rate of PE deposition measured by SEED. Differential reflectivity during deposition 274 

reduces linearly at a fixed Edep due to PE deposition (SI, Fig. S6) with a slope, S. The magnitude 275 

of S as a function of Edep peaks depends on the PE and the electrolyte. (a) Deposition rate of PSS 276 

with maximum close to PZC of the corresponding salt in solution. (b) Deposition rate of PAH 277 

with maximum close to PZC of NaCl.  278 
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rather than electrochemical potentials for convenience. (As the discussion is relative, absolute 281 

levels are not relevant). Let's take the solution as reference ground. As the Au electrode is 282 

immersed in PE solution, anions will be attracted towards the electrode because the Fermi level 283 

of Au is lower than that of solution. Owing to the higher mobility of Cl- or Br-, the smaller ions 284 

will diffuse over an order of magnitude faster than PSS towards the surface to form the EDL. 285 

(PAH, when present will be repelled). As the potential of the electrode in made more positive, 286 

i.e., Fermi level of electrode goes down, the smaller anions will diffuse faster towards the 287 

electrode to screen the field to further reduce the driving force for PSS to be attracted. When the 288 

potential is made negative, i.e., Fermi level goes up, beyond PZC, the same dynamics will apply 289 

for Na+ in PAH solution, where the former will outpace the latter. However, when the Fermi 290 

level aligns with PZC, the EDL is completely discharged and the field emanates the farthest. In 291 

this situation all the ions (positive and negative, small ions and PE), are attracted towards the 292 

electrode due to image charge. The Columbic attraction on PE (PSS or PAH) is orders of 293 

magnitude larger than the thermal energy unlike with the smaller ions. Furthermore, due to 294 

multiple binding sites in the polymer, it is difficult for PE (PSS or PAH) to detach (by thermal 295 

motion) from the surface once adsorbed. Thus, the polymer will adsorb and make the system off-296 

equilibrium leading to a finite deviation of OCP, i.e., |VZ - VZ,0| > 0.   297 

CONCLUSIONS 298 

We studied the electrodeposition process of negatively and positively charged polymers, PSS 299 

and PAH, respectively, on Au surface. Electrodeposition was achieved by applying a potential 300 

(Edep) between the Au electrode and the solution of 10 mM polymer in 100 mM of NaCl or 301 

NaBr. The process was characterized by measuring the OCP for different deposition time (tdep), 302 

and the rate of deposition was measured by differential reflectivity using a home built 303 
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instrument. Deposition was achieved within tdep of five minutes as manifested by leveling of 304 

OCP. The real time deposition by differential reflectivity showed a constant rate for 10 min for 305 

exposure to Edep. The results indicated that both the amount and rate of deposition is highest 306 

when Edep is close to the PZC of the solution which is determined by the small ions (primarily, 307 

Cl- and Br- because the EDL of Au is negatively charged). The implication appears counter-308 

intuitive. For example, the deposition of PSS in NaCl was higher when the electrode was at -200 309 

mV relative to the solution rather than +200 mV; and larger external potentials do not favor 310 

electrodeposition beyond to the PZC of the solution. Our results differ with previous reports that 311 

indicate that charge deposition/attraction in PE systems is possible only in the presence of 312 

multivalent ions56-59. As the deposition is remarkably sharp around the PZC of the solution, the 313 

approach may potentially have applications in developing complex nanoscale architectures by 314 

modulating working function of the electrodes and local PZC of the solution/electrode system. 315 
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 528 

S1. Chip Fabrication 529 

The 1 cm square Si chip with 5000 nm thick thermal oxide SiO2, was used to deposit 100 nm thick 530 
Au and 70 nm thick Ti as adhesion layer (Figure S1). The deposition of the electrode metals, Au 531 
was obtained by RF Sputtering. Using Laser Scanning Microscopy Keyence VK-X200K the 532 
resulting surface was characterized with an average roughness (Ra) of 81 ± 6 nm, maximum profile 533 
peak height (Rp) of 303 ± 19 nm and maximum  profile  valley  depth (Rv) of 295 ± 13 nm.  The 534 
chip was cleaned using RF plasma (Nordson March Model PX-250) at 38 W and 13.56 MHz with 535 
O2 at 70 mTorr for 2 min, followed by immersion in Piranha solution (75% Sulfuric Acid and 25% 536 
Hydrogen peroxide) to remove organic residues. Standard lithography using SU8 – 2025 as 537 
photoresist diluted 1:4 with cyclopentanone was performed to create a 5 mm square pattern. The 538 
thickness of resist was 300 nm. For lithography the chip was pre-baked for 45 s at 90 °C followed 539 
by exposure to 300 W Xe light for 45 s through a contact mask. The pattern was immersed in SU8 540 
developer (Microchem) to remove the unexposed resist (negative resist). To improve cured SU8 541 
adhesion to the surface the chip was hard baked at 140 °C for 1 hr. The chip was subjected to a 542 
final RF plasma cleaning under same conditions as above for 30 s to ensure clean Au electrode 543 
surface before polyelectrolyte (PE) deposition.   544 
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 553 

 554 

 555 

 556 

S2. Real-time monitoring of PE deposition to determine reproducibility 557 

During the deposition step, a current was observed that rapidly reaches saturation (Figure S2a).  558 
As the initial charge accumulation occurs primarily due to double layer charging from PE and 559 
associated counter ions, a (capacitive) current is generated. We monitor this capacitive current to 560 
qualitatively ensure that the deposition process reaches saturation. The current does not decay to 561 
zero due to non-idealities, such as the counter and working electrodes not behaving as ideal 562 
polarizable electrodes that act as perfect capacitors (e.g. leakage current), and the reference 563 
Ag/AgCl electrode is not completely non-polarizable. The long-scale PE deposition was 564 
indistinguishable from the electrolytic double layer charging, so calculation of the accumulated 565 
PE charge was not possible. However, the test enables us to ensure the reproducibility of the 566 
system, i.e., quality of the electrode and electrical circuity including the reference electrode 567 
function, or large adsorption or desorption events of impurities or aggregated PE. For example, 568 
current jumps during deposition are rejected because they are not reproducible (Figure S2b).    569 

 570 
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 584 

(b) (a) 

Figure S1. Chip showing the Au electrode with connection pad to the potentiostat for 
electrochemical experiments. 

Figure S2.  Typical current measured during deposition of PE. (a) Expected current behavior 
under optimal experimental conditions; Insert correspond to first 10 s of the same experiment. 
(b) Poorly-behaved current causing the run to be rejected. 
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S3. Open Circuit Potentials (OCP) measurements 585 

OCP was measured in 100 mM NaCl (reference solution) because both PAH and the reference 586 
electrode were potential sources of Cl- ions, and measuring in different environments affected the 587 
results. The OCP measurements were carried out using a the following regiment:  Immediately 588 
after deposition and a vigorous rinse in DI water of the sample to remove any remaining 589 
polyelectrolyte, the sample was placed in reference solution for three hours followed by another 590 
rinse in reference solution and immersion in freshly made reference solution to perform the OCP 591 
measurement.  If no three-hour soaking was performed, the OCP in reference solution for various 592 
deposition bias conditions showed undesirable behavior (Figure S3a).  For example, the OCP did 593 
not plateau for well over an hour (deposition at -300 mV in Figure S3a). The OCP showed 594 
anomalous behavior (deposition at -600 mV and 0 mV). In all cases, the initial OCP tended to be 595 
near the held potential, indicating an incomplete discharge of the double layer capacitance, which 596 
might also suggest excess polyelectrolyte could be loosely bound to the surface. This concern was 597 
supported by the observation of “jumps” in some voltage measurements (Figure S3a, -600 mV). 598 
Additionally, the long settling time of these runs contributed to measurement error as the end-point 599 
may incorrectly defined (i.e., for deposition at 0 mV there is a slow decay of OCP well beyond 600 
1000 s). Reported measurements of OCP were allowed to settle until the potential changes slower 601 
than 1 µV per second for the full duration of two minutes. This typically occurred on the order of 602 
600 seconds. The three hours was sufficient to presumably leech the counter ions, desorb excess 603 
PE, and perhaps facilitate conformational rearrangement of the PE chain. The success was 604 
indicated by smooth potential-time characteristics (Figure S3b).  605 

  606 
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 617 

 618 

 619 

Figure S3.  Open circuit potential as a function of time after deposition of PE at Edep, for samples 
that were (a) not immersed; and (b) immersed, in 100 mM NaCl reference solution prior to the 
measurement. The curves are for different Edep condition. 
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 620 

S4. Measurement of PZC by SEED 621 

Although SEED has been described earlier1-4 and its application to measurement of PZC has been 622 
shown,5 here we briefly describe the instrument and the PZC measurement for convenience to the 623 
reader. 624 

A 632 nm Helium-Neon (He-Ne) laser is directed to an objective lens using mirrors and beam 625 
splitters, where it is focused to a ~6 um spot on the surface of the electrode. The reflected light is 626 
then directed to a silicon photodetector using a beam splitter, labeled BS1 in Figure S4. The signal 627 
from the photodetector is amplified by a transconductance amplifier and fed to a lock-in amplifier 628 
to acquire RA as well as a data acquisition card connected to a computer to acquire RO. The 629 
differential reflected signal, R = RA/RO is calculated and stored in the computer.   630 

The reason for a peak at PZC is as follows. The oscillation of the refractive index occurs due to 631 
oscillation in the refractive index caused by the motion of ions due to the AC potential. Say, ne and 632 
nb are the refractive indices of the electrode and the solution near the electrode, respectively. Then 633 
Fresnel’s law, at normal incidence, gives the reflectivity r by:6 634 

𝑟𝑟 = 𝑛𝑛𝑏𝑏−𝑛𝑛𝑒𝑒
𝑛𝑛𝑏𝑏+𝑛𝑛𝑒𝑒

,  635 

As the ions near the surface of the electrode oscillate at frequency ω due to the applied AC voltage, 636 
the nb oscillates due to oscillation in ion concentration that is linearly proportional to the 637 
differential refractive index of the solution. As a result, the reflectivity oscillation at ω, rAC, is given 638 
by (see Tevatia et al., SI, Section S4),6 639 

𝑟𝑟𝐴𝐴𝐴𝐴 = 𝐾𝐾1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 〈𝛿𝛿𝑑𝑑〉𝑑𝑑𝑐𝑐𝑠𝑠𝜔𝜔𝜔𝜔 640 

where, K1 is a constant, and dn/dc is differential refractive index of the ions, and <δc> is the 641 
average concentration at the interface6. The ion oscillation reaches a local maximum as E 642 
approaches the VZ due to decreased screening of charges. As a result, the differential reflectivity, 643 
R shows a peak that is proportional to the amplitude of oscillation of ion concentration averaged 644 
over the interface. A typical signal of differential reflectivity over CV cycle shows two peaks in 645 
forward and reverse ramps (Figure S5). The signal for each cycle is superimposed (gray halo) and 646 
averaged over 10 cycles to obtain the PZC response curves (smooth curves) (Figure 3).  647 
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 680 

Figure S5. Typical (raw data) output from SEED. The applied bias is the CV ramp and R is the 
differential reflectivity measured by SEED.  Forward and reverse ramps are rising and falling CV 
potentials. 
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 681 

S5. Measurement of deposition rate by SEED 682 

Real time deposition was followed by measuring R at fixed bias (Edep) during 10 min. Raw data 683 
of solutions containing PE showed linear decay at various fixed potentials between the working 684 
electrode and the solution. Larger decay was observed near PZC of the corresponding salt 685 
present in the solution (Figure S6a-c). In solutions containing only salt, R decay was negligible 686 
(Figure S6d,e). Errors were calculated as deviation of the linear regression from raw data. Less 687 
than 5% error was found for all data point in each set. Error bars are not noticeable as they are 688 
inside of the data point (Figure 4 and S7)  689 
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Figure S6.  Raw differential reflectivity (R) data; Panels (a) to (c) show R decay for PE and 
salt present in the solution. Panels (d) and (e) show R decay for only salt present in the 
solution.   
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S6. Summary of Peak values 766 

 767 

S7.  Anomalous behavior on NaBr/PAH System  768 

Although the PAH/NaBr system is not further pursued in this study the anomalous behavior is 769 
conjectured. The anomalous behavior of NaBr may be attributed to the formation of strong 770 
specific bond between Br- and Au in contrast to a much weaker bond with Cl- 7. When anions 771 
bond specifically on the gold surface, surface reconstruction can occur shifting the PZC. 772 
Moreover, at low pH it has been shown that gold PZC can change up to 300 mV due to surface 773 
reconstruction. This might explain why the anomalous behavior is only present in PAH solutions 774 
(pH 4.6) and not in PSS (pH 8.0).8 Only Vz data for 10 mM PAH – 100mM NaBr system is 775 
reported in Table 1. 776 

 777 

System V z (mV)
Edep (mV)  at                    

|V Z,0  - V O |P  max 
|V Z,0  - V O |P  max (mV) E dep  (mV) at                

|S | max
|S | max (10-8 s-1)

100 mM NaCl -240.0 N/A N/A N/A N/A
100 mM NaBr -60.0 N/A N/A N/A N/A
10 mM PSS - 100 mM NaCl -210.0 -240.0 187.9 -210.0 11.0
10 mM PSS - 100 mM NaBr -80.0 -60.0 192.6 -70.0 3.1
10 mM PAH - 100 mM NaCl -250.0 -240.0 167.9 -225.0 13.2
10 mM PAH - 100 mM NaBr 250.0 N/A N/A N/A N/A

Figure S7.  Rate of deposition measured by SEED.  The data is reproduced from Fig. 4 with 
an added curve for control showing no peak in the absence of the PE. The panels (a) to (c) are 
for different PE and Edep conditions (shown in Fig. 1). 
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